PORTUGALIAE MATHEMATICA

ISSN 0032-5155

VOLUME 43

1985-1986

Edição da
SOCIEDADE PORTUGUESA DE MATEMÁTICA

PORTUGALIAE MATHEMATICA
Av. da República, 37-4.°
1000 LISBOA—PORTUGAL

ON POLYNOMIAL INVARIANT CHAINS OF MATRICES AND PRINCIPAL SUBMATRICES

BY

JOÃO CARLOS DAVID VIEIRA

Departamento de Matemática, Universidade de Aveiro 3800 Aveiro — PORTUGAL

ABSTRACT. Let $\chi_{s_1}, \ldots, \chi_{s_1}$ and $\xi_{r_1}, \ldots, \xi_{r_t}$ be two sequences of nonzero monic polynomials with s_j and r_i integer numbers satisfying the inequalities $1 \leqslant s_1 < \ldots < s_q < n$ and $1 \leqslant r_1 < \ldots < r_t < n+p$. Necessary and sufficient conditions are given for matrices A and B to exist such that: (i) B is an n+p square matrix having A as principal n-square block; (ii) the characteristic invariant chains of A and B (namely $\alpha_1, \ldots, \alpha_n$ and $\beta_1, \ldots, \beta_{n+p}$) satisfy $\alpha_{s_j} = \chi_{s_j}$ and $\beta_{r_i} = \xi_{r_i}$, for $j=1,\ldots,q$ and $i=1,\ldots,t$.

Note that no minimal polynomial is prescribed.

1. Introduction

In this paper **K** denotes an arbitrary field and greek letters are used to represent either monic polynomials in the variable λ or polynomial chains. A and B represent square matrices over **K** of orders respectively n and n+p $(n\geqslant 1$ and $p\geqslant 0)$. Given two polynomials μ and ν we write $\mu<:\nu$ to mean that μ divides ν . Sometimes we will use the following notation

inf
$$(\mu, \nu)$$
: = gcd (μ, ν) and sup (μ, ν) : = 1cm (μ, ν) ,

where gcd and 1cm stand for greatest common divisor and least common multiple.

Received December 5, 1984. Revised April, 1 1986.

Recall that the *characteristic invariant factors* of A are the invariant factors of λI — A which we represent by $\alpha_1, ..., \alpha_n$ and are defined by

$$\alpha_1 \alpha_2 \dots \alpha_k = \gcd \{ \text{minors of order } k \text{ of } \lambda I - A \},$$

for $k=1,\ldots,n$. Obviously $\alpha_1<:\alpha_2<:\ldots<:\alpha_n$. Similarly are defined the characteristic invariants of B, denoted by $\beta_1,\ldots,\beta_{n+p}$.

The sequence α : = $(\alpha_1, ..., \alpha_n)$ is called the *characteristic invariant* chain of A, or simply the *invariant chain of* A.

Following [1] we also denote by α the infinite sequence of invariant factors $(..., 1, 1, \alpha_1, \alpha_2, ..., \alpha_n, 0, 0, ...)$ obtained from $(\alpha_1, ..., \alpha_n)$ by adding to it an initial infinite string of l's and a final infinite string of 0's. Therefore we have $\alpha = (\alpha_i : i \in \mathbf{Z})$, where

$$\alpha_i=1, \ if \ i<1$$
 ; $\alpha_i=0, \ if \ i>n$; $\alpha_i<:\alpha_{i+1}, \ for \ i\in \boldsymbol{Z}.$

Similarly, we name by invariant chain of B either the sequence $(\beta_1,...,\,\beta_{n+p})$ or the infinite sequence $\beta=(\beta_i:i\in \mathbf{Z})$, where $\beta_i=1$ if i<1, and $\beta_i=0$ if i>n+p.

Generally speaking, a *chain* is a sequence of polynomials $\gamma = (\gamma_i : i \in \mathbf{Z})$, such that $\gamma_i < : \gamma_{i+1}$. The *rank* of a chain γ is defined by

rank
$$(\gamma)$$
: = inf $\{i : \gamma_{i+1} = 0\}$.

For a given integer k and a given chain γ with rank $(\gamma)\geqslant k,$ we define the k – degree of γ by

$$\deg_k \; (\gamma) \; : \; = \sum_{i \; \leqslant \; k} \deg \; (\gamma_i)$$

A matrix A is said to be c-imbeddable in B if A is a principal submatrix of a matrix \overline{B} similar to B.

Let us fix once for all the following two sequences of nonzero monic polynomials to be used in what follows:

(1.1)
$$\chi_{s_1}, ..., \chi_{s_q} \text{ and } \xi_{r_1}, ..., \xi_{r_t}$$

where the s_j and r_i are fixed integers such that $1\leqslant s_1<...< s_q< n$, $1\leqslant r_1<...< r_t< n+p.$ We always assume that

$$\chi_{s_1}<:...<:\chi_{s_q}$$
 and $\xi_{r_1}<:...<:\xi_{r_t}$

2. Some sets of chains

Let us denote by C the set of all chains

$$C:=\{\gamma=(\gamma_i): \gamma_i<: \gamma_{i+1} \text{ for all } i\in \mathbf{Z}\},$$

and define on C, in a natural way, the following partial ordering:

$$\gamma < : \, \delta \quad \text{iff} \quad \gamma_i < : \, \delta_i \quad \text{for all } i \in {\bf Z},$$

and the two operations

$$\inf (\gamma, \delta) := (\gcd (\gamma_i, \delta_i) : i \in \mathbf{Z}), \sup (\gamma, \delta) := (1 \operatorname{cm} (\gamma_i, \delta_i) : i \in \mathbf{Z}).$$

With these two operations, C is obviously a complete lattice. In C define the *shifting operator of order* s, for any integer s, by the following convention:

Es γ is the chain γ' with coordinates γ_i' : = γ_{i+s} .

Consider the following subset of C

$$C_\chi\colon=\{\gamma\in C\,:\,\gamma_{s_{\mathbf{j}}}=\chi_{s_{\mathbf{j}}}\text{ for }j=1,\,...,\,q\}$$

where χ_{s_i} are the polynomials referred in (1.1). It is easily seen that, given an arbitrary set of chains of C_{χ} , the infimum and the supremum of this set also belong to C_{χ} . Thus C_{χ} is a complete sublattice of C.

Let χ^m and χ^M be the chains whose coordinates are given by

$$\chi^m_i := \left\{ \begin{array}{ll} 1 \quad \text{if} \qquad i < s_1 \\ \chi_{s_j} \quad \text{if} \quad s_j \leqslant i < s_{j+1} \\ \chi_{s_q} \quad \text{if} \quad s_q \leqslant i \end{array} \right. \qquad \chi^M_i := \left\{ \begin{array}{ll} \chi_{s_1} \quad \text{if} \qquad i \leqslant s_1 \\ \chi_{s_k} \quad \text{if} \quad s_{k-1} < i \leqslant s_k \\ 0 \quad \text{if} \quad s_q < i \end{array} \right.$$

It is easy to prove the following:

Proposition 2.1. The chain χ^m is the infimum of C_{γ} and χ^M is the supremum of C_{γ} .

A similar result can be proved for the set

$$C_{\xi} := \{ \delta \in C : \delta_{r_k} = \xi_{r_k}, \text{ for } k = 1, ..., t \}.$$

As a matter of fact, if we define ξ^m and ξ^M by

$$\xi_i^m := \left\{ \begin{array}{ll} 1 \quad \text{if} \qquad i < r_1 \\ \xi_{r_k} \ \text{if} \ r_k \leqslant i < r_{k+1} \\ \xi_{r_t} \ \text{if} \ r_t \leqslant i \end{array} \right. \quad \xi_i^M := \left\{ \begin{array}{ll} \xi_{r_1} \ \text{if} \qquad i \leqslant r_1 \\ \xi_{r_k} \ \text{if} \ r_{k-1} < i \leqslant r_k \\ 0 \quad \text{if} \quad r_t < i \end{array} \right.$$

we have the following

Proposition 2.2. The chain ξ^m is the infimum of C_ξ and ξ^M is the supremum of C_ξ .

The following set $P(X, \xi)$ will play an important role in the sequel (recall that p is a fixed nonnegative integer):

$$P(X, \xi) := \{ (\gamma, \delta) : \delta <: \gamma <: \mathbf{E}^{2p} \delta, \gamma \in C_{\chi}, \delta \in C_{\xi} \}.$$

THEOREM 2.3. The set $P(X, \xi)$ is nonempty if and only if the following relations hold:

Proof. Assume that there exists a pair (γ, δ) in the set $P(\chi, \xi)$. Then it follows that

$$\chi^m<$$
 : $\gamma<$: χ^M , $\xi^m<$: $\delta<$: ξ^M and $\delta<$: $\gamma<$: E^{2p} $\delta.$

From these relations we obtain (2.1) by transitivity.

Conversely, assume (2.1) holds. Consider the chains γ and δ given by $\gamma := \sup (\chi^m, \xi^m)$ and $\delta := \sup (\xi^m, E^{-2p} \chi^m)$. Using (2.1) it can be proved that (γ, δ) belongs to $P(\chi, \xi)$. We omit the details.

In the sequel we shall use the following additional notations:

$$(2.2) \qquad \begin{array}{lll} \chi^{\sigma} \colon = \inf & (\chi^{M} \text{ , } E^{\uparrow p} \text{ ξM}) & \xi^{\sigma} \colon = \inf & (\xi^{M}, \, \chi^{M}) \\ \\ \chi^{\iota} \colon = \sup & (\chi^{m} \text{ , ξ^{m}}) & \xi^{\iota} \colon = \sup & (\xi^{m}, \, E^{-2p} \text{ χ^{m}}). \end{array}$$

In a natural way we define in $P(\chi, \xi)$ a partial order relation by

$$(\alpha, \beta) < : (\gamma, \delta) \text{ iff } \alpha < : \gamma \text{ and } \beta < : \delta.$$

It can be proved that $P(\mathfrak{X}, \xi)$ is a complete sub-lattice of $C_{\mathfrak{X}} \times C_{\xi}$ with respect to this partial ordering. In particular the supremum and the infimum of $P(\mathfrak{X}, \xi)$ may be described in terms of the chains defined in (2.2). This is the purpose of the following theorem whose proof we omit.

Theorem 2.4. Assume $P(\chi, \xi)$ is nonempty. Then $(\chi^{\sigma}, \xi^{\sigma})$ and $(\chi^{\iota}, \xi^{\iota})$ are respectively the supremum and the infimum of $P(\chi, \xi)$.

3. Main results

Theorem 3.1. Let A and B be two square matrices of orders n and n+p with characteristic invariant chains α and β , respectively. If $\alpha \in C_{\chi}$, $\beta \in C_{\xi}$ and if A is c-imbeddable in B, then we have

(3.1)
$$\chi^{m} < : E^{2p} \xi^{M} \text{ and } \xi^{M} < : \chi^{m}.$$

Proof. From the hypotheses and from the results in [1, 2] it follows that the pair (α, β) belongs to $P(\chi, \xi)$. Therefore, (3.1) follows from Theorem 2.3.

THEOREM 3.2. Under the conditions of Theorem 3.1 we have the following degree inequalities:

$$(3.2) \qquad \deg_n (\chi^{\iota}) \leqslant n \text{ and } \deg_{n+p} (\xi^{\iota}) \leqslant n+p.$$

Proof. From the hypotheses it follows that rank $(\alpha) = \deg_n(\alpha) = n$ and rank $(\beta) = \deg_{n+p}(\beta) = n+p$. Since (α, β) belongs to $P(X, \xi)$ it follows from Theorem 2.4 that $\chi^i < : \alpha$ and $\xi^i < : \beta$. This yields (3.2).

Theorem 3.3. Assume that the sequences χ and ξ satisfy the conditions (3.1) and (3.2). Then two matrices A and B exist such that A is c-imbeddable in B, the characteristic invariant chain of A belongs to C_{χ} and the characteristic invariant chain of B belongs to C_{ξ} .

Proof. Conditions (3.1) mean that $P(\chi, \xi)$ is nonempty. We use the infimum of $P(\chi, \xi)$ given by (2.2) and Theorem 2.4 in the following construction of two chains α and β :

$$\begin{split} \alpha_i &= \chi_i^t \ \mathrm{if} \ i < n; \qquad \alpha_n &= \upsilon \chi_n^t \quad \mathrm{and} \ \alpha_i = 0 \ \mathrm{if} \ i > n \\ \beta_j &= \xi_j^t \ \mathrm{if} \ j < n+p; \ \beta_{n+p} = \omega \xi_{n+p}^t \ \mathrm{and} \ \beta_j = 0 \ \mathrm{if} \ j > n+p. \end{split}$$

In these definitions of α and $\beta,$ υ and ω are any polynomials such that

$$\mathrm{deg}\left(\upsilon\right)=n-\mathrm{deg}_{n}\left(\chi^{\iota}\right)\ \ \text{and}\ \ \mathrm{deg}\left(\omega\right)=n+p-\mathrm{deg}_{n+p}\left(\xi^{\iota}\right).$$

Such polynomials exist because of (3.2). It is a simple matter to prove that the pair (α, β) belongs to $P(\chi, \xi)$. The results in [1, 2] may again be applied to conclude the proof.

REFERENCES

- E. Marques de Sá Imersão de Matrizes e Entrelaçamento de Factores Invariantes, Tese de Doutoramento, Universidade de Coimbra, 1979.
- 2. R. C. Thompson Interlacing Inequalities for Invariant Factors, Linear Algebra and its Applications, 24 (1979), 1-32.
- J. DAVID VIEIRA Partial Prescription of Matrices and Submatrices Invariant Polynomials, Algebra Lineal y Aplicaciones, Actas del Encuentro Internacional de Algebra Lineal y Aplicaciones, Vitoria, 1983, pp 418-424